SONEL - удобно, точно, надежно!
Наша библиотека
Многозначные меры электрического сопротивления SONEL
Аттестация рабочих мест с люксметром LXP-1
Указатели напряжения и правильности чередования фаз серии TKF
«Лучшая защита – это... изоляция»
Новое поколение измерителей параметров электроизоляции серии MIC
ТЕСТ-ДРАЙВ MRU-200
КЛАССИЧЕСКИЕ ПРEЕМНИКИ
Новое поколение многофункциональных измерителей
Великий комбинатор. Первое знакомство с многофункциональным измерителем MPI-525
Комплекты для поиска скрытых коммуникаций LKZ-700
Оранжевая эволюция электроизмерительных клещей
MPI-502 УЛЬТРА
А класс. PQM-701 Анализатор параметров качества электрической энергии
Теория и практика измерения параметров качества электроэнергии
Восстановление ресурса аккумуляторов SONEL
Измерение сопротивления заземляющих устройств
Импульсный метод измерения заземляющих устройств в вопросах и ответах
Тепловизоры KT-160, KT-160A
MZC-304, MZC-305 Новые измерители сопротивления петли короткого замыкания
Измерение полного сопротивления петли короткого замыкания
Аксессуары для измерителей SONEL
АБСОЛЮТНЫЙ НОЛЬ. Диапазоны измерения и отображения
Превосходство как наваждение
ТРЕТИЙ, НЕ ЛИШНИЙ
О периодичности испытаний электрооборудования
Магазин мер сопротивлений
Техника безопасности на досуге
Элементы питания
Значение закона Ома
Трехфазная система ЭДС
Первые исследования электрического напряжения
Электробезопасность на улице
Аккумуляторы
Битва электрических королей
Электромагнитный двигатель
Человека защитит УЗО
Об устройствах защитного отключения (УЗО)
Токи утечки в электроустановках зданий
Автоматический выключатель
Схемы измерений заземлителей
Основные характеристики заземлителей
Напряжение прикосновения
Напряжение прикосновения (дополнение)
Защита трубопроводов от коррозии
Измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов
Измерение сопротивления постоянному току
Измерение параметров качества электрической изоляции
Качество электрической энергии
Качество электроэнергии — основы мониторинга и анализа
Доклад Министра энергетики С.И.Шматко в рамках «Правительственного часа» на заседании Государственной Думы Федерального Собрания Российской Федерации (3 июня 2009 года)
Новый стандарт по качеству электрической энергии
Параметры качества электроэнергии
Наша библиотека
Главная // Наша библиотека // Статьи // Качество электрической энергии // 3.2. Колебания напряжения

3.2. Колебания напряжения

3.2. Колебания напряжения

Колебания напряжения вызываются резким изменением нагрузки на рассматриваемом участке электрической сети, например, включением асинхронного двигателя с большой кратностью пускового тока, технологическими установками с быстропеременным режимом работы, сопровождающимися толчками активной и реактивной мощности — такими как, привод реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т.п.

Колебания напряжения характеризуются двумя показателями :
— размахом изменения напряжения;
— дозой фликера.

Размах изменения напряжения Ut вычисляют по формуле, %

Колебания напряжения (3.4)

где Ui , Ui+1 — значения следующих один за другим экстремумов (или экстремума и горизонтального участка) огибающей среднеквадратичных значений напряжения, в соответствии с рис.3.1.

Колебания напряжения

Рис.3.1 Колебания напряжения

Частота повторения изменений напряжения FUt , (1/с, 1/мин) определяется по выражению:

Колебания напряжения (3.5)

где m — число изменений напряжения за время Т;
Т — интервал времени измерения, принимаемый равным 10 мин.

Если два изменения напряжения происходят с интервалом менее 30 мс, то их рассматривают как одно .
Интервал времени между изменениями напряжения равен:

Колебания напряжения (3.6)

Оценка допустимости размахов изменения напряжения (колебаний напряжения) осуществляется с помощью кривых зависимости допустимых размахов колебаний от частоты повторений изменений напряжения или интервала времени между последующими изменениями напряжения.

КЭ в точке общего присоединения при периодических колебаниях напряжения, имеющих форму меандра (прямоугольную) (см. рис 3.2) считают соответствующим требованиям стандарта, если измеренное значение размаха изменений напряжения не превышает значений, определяемых по кривым рис. 3.2 для соответствующей частоты повторения изменений напряжения FUt , или интервала между изменениями напряжения ti,i+1 .

Колебания напряжения произвольной формы (а) и имеющие форму меандра(б)

Рис.3.2 Колебания напряжения произвольной формы (а) и имеющие форму меандра(б)

Предельно допустимое значение суммы установившегося отклонения напряжения Uy и размаха изменений напряжения Ut в точках присоединения к электрическим сетям напряжением 0,38 кВ равно ?10 % от номинального напряжения .

Доза фликера — это мера восприимчивости человека к воздействию колебаний светового потока, вызванных колебаниями напряжения в питающей сети, за установленный промежуток времени.

Стандартом устанавливается кратковременная ( Pst ) и длительная доза фликера ( PLt ) (кратковременную определяют на интервале времени наблюдения, равном 10 мин, длительную на интервале — 2 ч). Исходными данными для расчета являются уровни фликера, измеряемые с помощью фликерметра — прибора, в котором моделируется кривая чувствительности (амплитудно-частотная характеристика) органа зрения человека. В настоящее время в Российской Федерации началась разработка фликерметров для контроля колебаний напряжения.

КЭ по дозе фликера соответствует требованиям стандарта, если кратковременная и длительная дозы фликера, определенные путем измерения в течении 24 ч или расчета, не превышают предельно допустимых значений: для кратковременной дозы фликера — 1,38 и для длительной — 1,0 (при колебаниях напряжения с формой, отличающейся от меандра) .

Предельно допустимое значение для кратковременной дозы фликера в точках общего присоединения потребителей электроэнергии, располагающих лампами накаливания в помещениях, где требуется значительное зрительное напряжение, равно 1,0, а для длительной — 0,74, при колебаниях напряжения с формой, отличающейся от меандра.