

MZC-305

ИЗМЕРИТЕЛИ ПАРАМЕТРОВ ЦЕПЕЙ ЭЛЕКТРОПИТАНИЯ ЗДАНИЙ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Версия 1.13

1	БЕЗОПАСНОСТЬ	4
2	НАСТРОЙКА ИЗМЕРИТЕЛЯ	5
3	ИЗМЕРЕНИЕ	6
3.1	Запоминание последнего результата измерения	6
3.2	Измерение переменного напряжения	7
3.3	Проверка наличия защитного заземления (РЕ)	7
3.4	Измерение параметров петли короткого замыкания	7
3.	4.1 Установка параметров измерения	8
3.	4.2 Измерение параметров петли короткого замыкания L-N и L-L	8
3.	4.3 Измерение параметров петли короткого замыкания L-PE	11
3.	4.4 Измерение параметров петли короткого замыкания в цепи L-PE с установленными УЗО	13
4	ПАМЯТЬ	14
4.1	Запись в память результатов измерения	14
4.2	Изменение номера ячейки и/или Bank памяти	16
4.3	Просмотр данных памяти	16
4.4	Удаление данных одного банка памяти	17
4.5	Удаление вех данных памяти	18
_		
5	ИНТЕРФЕЙС	
5.1	Подключение измерителя к компьютеру	19
5.2	Обновление программного обеспечения измерителя	19
6	ПИТАНИЕ	19
6.1	Информация о состоянии элементов питания	19
6.2	Установка элементов питания	20
6.	2.1 Выбор типа элементов питания	21
7	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	21
7.1	Основные технические характеристики	21

7.2	L.1	Измерение напряжения переменного тока (True RMS)	21
7.2	l.2	Измерение параметров петли короткого замыкания Z _{L-PE} , Z _{L-N} , Z _{L-L}	22
7.1	L.3	Измерение параметров петли короткого замыкания Z _{L-PE} RCD	23
7.2	До	ополнительные характеристики	23
8	К	ОМПЛЕКТАЦИЯ	24
8.1	Ста	андартная комплектация	24
8.2	До	ополнительная комплектация	24
9	OI	БСЛУЖИВАНИЕ ПРИБОРА	25
10	УТ	гилизация	25
11	П	OBEPKA	25
12	CE	ВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ	26
13	CE	ВЕДЕНИЯ О ПОСТАВЩИКЕ	26
14	CE	ВЕДЕНИЯ О СЕРВИСНОМ ЦЕНТРЕ	26
15	CC	СЫЛКИ В ИНТЕРНЕТ	26

1 БЕЗОПАСНОСТЬ

Прибор MZC-305 — это переносной измеритель, производящий расчёт ожидаемого тока короткого замыкания на основании полного сопротивления петли короткого замыкания. Прибор рекомендован для проведения измерений в электроустановках, сетях зданий, сооружений и промышленных предприятий, в которых погрешность, вызванная пренебрежением реактивным сопротивлением, может иметь существенное значение. На основании показаний прибора по измерению и расчёту ожидаемого тока короткого замыкания можно выбрать необходимые номиналы автоматов защитного отключения по каждой цепи электропитания.

Для того чтобы гарантировать правильную работу прибора и требуемую точность результатов измерений, необходимо соблюдать следующие рекомендации:

Внимание 🗥

Перед работой с прибором необходимо изучить данное Руководство, тщательно соблюдать правила защиты, а также рекомендации Изготовителя.

Применение прибора, несоответствующее указаниям Изготовителя, может быть причиной поломки прибора и источником серьёзной опасности для Пользователя.

- Прибором могут пользоваться лица, имеющие соответствующую квалификацию и допуск к данным работам;
- Во время измерений Пользователь не может иметь непосредственного контакта с открытыми частями, доступными для заземления (например, открытые металлические трубы центрального отопления, проводники заземления и т.п.); для обеспечения хорошей изоляции следует использовать соответствующую спецодежду, перчатки, обувь, изолирующие коврики и т. д.;
- Нельзя касаться открытых токоведущих частей, подключенных к электросети;

• Недопустимо применение:

- о измерителя, повреждённого полностью или частично;
- о проводов с повреждённой изоляцией;
- о измерителя, продолжительное время хранившийся в неправильных условиях (например, в сыром или холодном помещении);
- Ремонт прибора может выполняться лишь авторизованным сервисным предприятием.

ПРЕДУПРЕЖДЕНИЕ:

Не выполнять измерения во взрывоопасной среде (например, в присутствии горючих газов, паров, пыли и т.д.). Использование измерителя в таких условиях может вызвать искрение и взрыв.

Внимание 🧥

Настоящее изделие относится к универсальным измерительным приборам для измерения и контроля электрических величин (напряжения, силы тока, сопротивления и мощности).

Символы, отображенные на приборе:

 O

Клавиша для включения (ON) и выключения (OFF) питания измерителя.

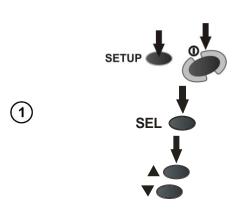
Измеритель защищен двойной и усиленной изоляцией.

Перед работой с прибором необходимо изучить данное Руководство, тщательно соблюдать правила защиты, а также рекомендации Изготовителя.

 ϵ

Знак соответствия стандартам Европейского союза.

Измеритель, предназначенный для утилизации, следует передать Производителю. В случае самостоятельной утилизации её следует проводить в соответствии с действующими правовыми нормами.

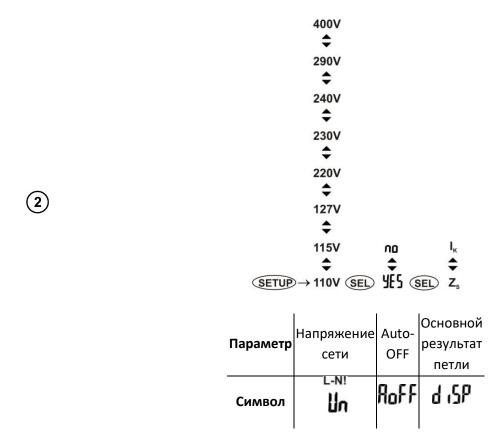

Декларация о соответствии. Измеритель соответствует стандартам Российской Федерации.

Свидетельство об утверждении типа. Измеритель внесён в Государственный реестр средств измерений.

1 >**750**V Максимальное напряжение на входе прибора не должно превышать 750В переменного напряжения.

CAT IV 600V — Маркировка на оборудовании означает, что оно используется в сетях напряжением до 600В, относится к IV категории монтажа.

2 НАСТРОЙКА ИЗМЕРИТЕЛЯ


Удерживая клавишу **SETUP**, включите измеритель.

Клавишей **SEL** выберите параметр для установки.

Клавишами Δ и ∇ установите необходимые значения выбранного параметра.

Изменяемая величина будет мигать на дисплее.

Символ **УЕ5** - активация параметра, **ПО** - дезактивация.

Для подтверждения установленных параметров нажмите клавишу **ENTER**.

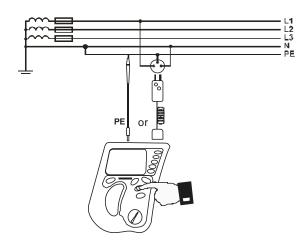
Для отмены подтверждения установок нажмите клавишу **ESC**.

Внимание 🧥

Перед первым измерением обязательно установите значение номинального напряжения сети, в которой Вы работаете (U_n 110/190B, 115/200B, 127/220B, 220/380B, 230/400B, 240/415B, 290/500B или 400/690B). Данное значение будет использоваться при расчёте ожидаемого тока короткого замыкания.

3 ИЗМЕРЕНИЕ

3.1 Запоминание последнего результата измерения


После окончания измерения результат автоматически заносится в память прибора. Данное значение будет сохранено независимо от последующего положения поворотного переключателя, включения/отключения прибора, до момента проведения следующего измерения. Чтобы отобразить сохранённый результат на дисплее измерителя, нажмите клавишу **ESC**.

3.2 Измерение переменного напряжения

Измеритель отображает значение переменного напряжения перед началом измерения. Напряжение измеряется для частоты 45...65Гц. Измерительные проводники должны быть подключены в соответствии с выбранной функцией измерения.

3.3 Проверка наличия защитного заземления (РЕ)

Подключите измеритель согласно схеме представленной на рисунке. Прикоснитесь пальцем к электроду прикосновения, расположенному на корпусе измерителя, и удерживайте его 1-2 секунды. Если прибор обнаружит опасное напряжение на проводнике РЕ, на дисплее отобразится символ РЕ (неправильное подключение проводника, замыкание), а также будет издаваться непрерывный звуковой сигнал.

Внимание 🧥

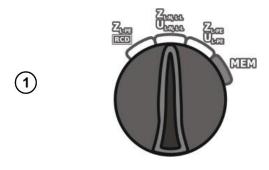
В случае обнаружения опасного напряжения, немедленно отключите измерительные проводники и прекратите измерения, до выявления и исправления неисправности.

Пользователь должен быть уверен, что во время измерения стоит на проводящем полу, иначе измерение будет не корректным.

В режимах Z_{L-PE} и Z_{L-PE} RCD, когда подключен измерительный проводник (разъёмы L, N, PE) к фазному проводнику сети, проверка PE будет осуществляться при касании электрода на корпусе измерителя.

В режимах Z_{L-PE} и Z_{L-PE} RCD, когда подключены проводники L и N, проверка напряжения на PE при касании электрода на корпусе, может не всегда срабатывать. Это зависит от ряда факторов: покрытие пола, сопротивление ЗУ, напряжение сети, материал обуви и т.д.

3.4 Измерение параметров петли короткого замыкания


Внимание 🔨

Если в проверяемой цепи имеются выключатели УЗО, то на время измерения сопротивления их следует зашунтировать при помощи мостов. Нужно помнить, что таким образом производятся изменения в измеряемой цепи и результаты могут несколько отличаться от действительности. Каждый раз после измерений следует удалить изменения, проведенные на время измерений, и проверить работу выключателя УЗО. Предыдущее замечание не касается замеров сопротивления петли при использовании функции Z_{L-PE} RCD.

Внимание 🧥

Проведение большого числа измерений в коротких промежутках времени приводит к тому, что на резисторе, ограничивающем ток, проходящий через измеритель, может выделяться тепло. В связи с этим корпус прибора может нагреваться. Это нормальное явление и измеритель имеет защиту от перегрева.

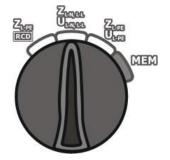
3.4.1 Установка параметров измерения

Установите поворотный переключатель в режим измерения параметров петли короткого замыкания

Установите необходимые параметры измерения согласно приведенному алгоритму.

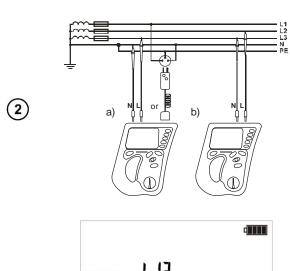
Внимание 🗥

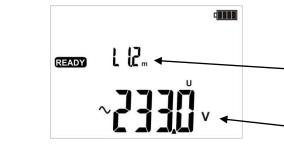
При измерении с помощью адаптера WS для компенсации его сопротивления установите на дисплее символ $--\mathbf{E}$.


Внимание 🧥

Применение измерительных проводников, рекомендованных производителем, позволяет избежать дополнительной погрешности при измерении.

Применение адаптеров WS допустимо только в сетях напряжением не выше 250В.


3.4.2 Измерение параметров петли короткого замыкания L-N и L-L


Включите измеритель.

Установите поворотный переключатель в режим $\mathbf{Z}/\mathbf{U}_{\text{L-N,L-L}}$.

Подключите измеритель согласно схемам:

- а) для измерения в цепи L-N.
- b) для измерения в цепи L-L.

Надпись **READY** на дисплее говорит о готовности прибора к измерению.

Длина измерительного проводника L или cumbon - - E.

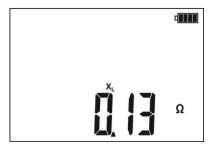
Действующее напряжение U_{L-N}.

(3)

Для начала измерения нажмите клавишу **START**.

Главный результат измерения параметров петли короткого замыкания: полное сопротивление Z_S или ожидаемый ток короткого замыкания I_K .

Дополнительные результаты измерения отображаются при нажатии клавиш \blacktriangle и \blacktriangledown .


 $I_{\mbox{\scriptsize K}}$ - Ожидаемый ток короткого замыкания.

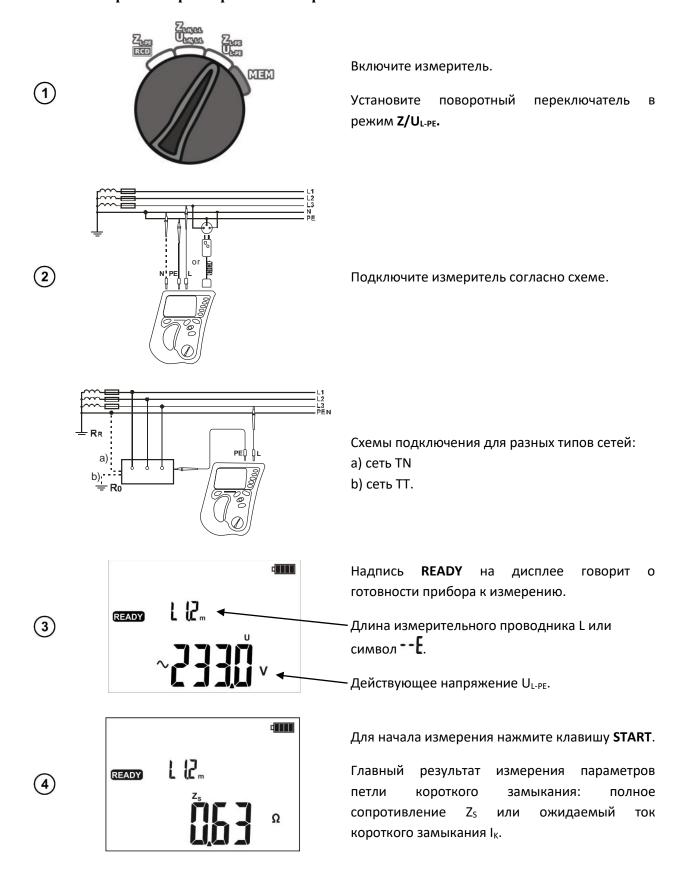
 Z_S - Полное сопротивление петли короткого замыкания.

R - Активная составляющая сопротивления.

X_L - Реактивная составляющая сопротивления.

Действующее напряжение сети в момент проведения измерения.

- Сохраните полученный результат измерения в памяти прибора согласно п. 4.1 или нажмите **ESC** для возврата в режим измерения действующего напряжения.
- При проведении большого числа измерения за короткий промежуток времени, измеритель может выделять большое количество тепла. В приборе предусмотрена защита от перегрева.
- Минимальный интервал между измерениями составляет не менее 5 секунд. Это контролируется прибором, который отображает символ (READY), подтверждающий готовность к следующему измерению.


Возможные сообщения, отображаемые на дисплее:


READY	Прибор готов к проведению измерений	
Ĺ-n	Напряжение между L и N находится вне допустимого для измерения диапазона.	
Err	Ошибка измерения. Невозможно отобразить результат.	
ErrU	Отсутствие напряжения на объекте.	
E00	Необходимо обратиться в Сервисный Центр	

Ошибка **возникает** из-за особенностей схемы косвенного метода измерения параметров петли «фаза-ноль». После нажатия клавиши **START**, во входной цепи прибора протекает ток (до 22A), зависящий от параметров объекта измерения. Данный факт приводит к износу эталонного резистора, блока управления и/или предохранителя. Средний ресурс рассчитан на 5000 измерений. Ресурс значительно снижается, если:

- Проводить измерение малых сопротивлений контура короткого замыкания (чем меньше сопротивление, тем больше ток меньше ресурс)
- Проведение измерений в сетях с сильно искаженной синусоидой. Например, сети, где используется инверторы для управления оборудованием или сети аварийного питания.

3.4.3 Измерение параметров петли короткого замыкания L-PE

Дополнительные результаты измерения отображаются при нажатии клавиш lacktriangle и lacktriangle .

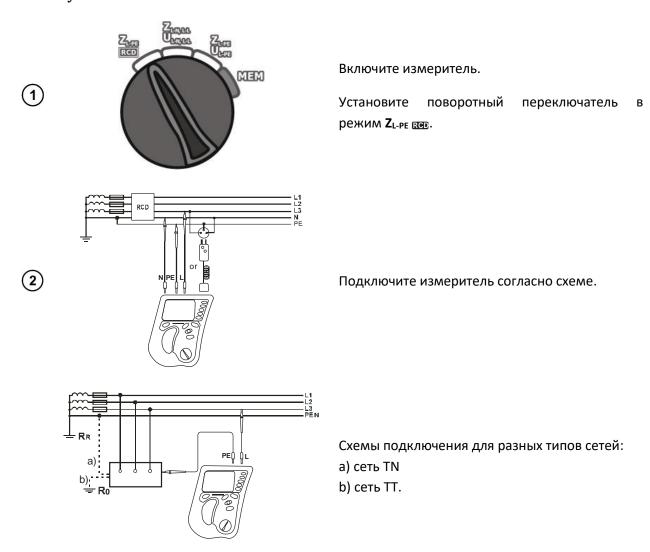
 I_K - Ожидаемый ток короткого замыкания.

 Z_{S} - Полное сопротивление петли короткого замыкания.

R - Активная составляющая сопротивления.

X_L - Реактивная составляющая сопротивления.

Действующее напряжение сети в момент проведения измерения.


- Сохраните полученный результат измерения в памяти прибора согласно п. 4.1 или нажмите **ESC** для возврата в режим измерения действующего напряжения.
- При проведении большого числа измерения за короткий промежуток времени, измеритель может выделять большое количество тепла. В приборе предусмотрена защита от перегрева.
- Минимальный интервал между измерениями составляет не менее 5 секунд. Это контролируется прибором, который отображает символ **READY**, подтверждающий готовность к следующему измерению.

Возможные сообщения, отображаемые на дисплее:

READY	Прибор готов к проведению измерений
l-n	Напряжение между L и N находится вне допустимого для измерения диапазона.
Err	Ошибка измерения. Невозможно отобразить результат.

Errll	Отсутствие напряжения на объекте.
600	Необходимо обратиться в Сервисный Центр

3.4.4 Измерение параметров петли короткого замыкания в цепи L-PE с установленными УЗО

Остальные шаги совпадают с измерением параметров петли короткого замыкания L-PE.

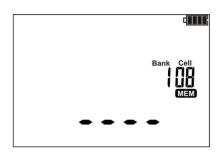
Максимальное время измерения не превышает 32 секунды. Измерение может быть прервано нажатием клавиши **ESC**.

Возможные сообщения, отображаемые на дисплее:

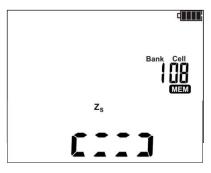
READY	Прибор готов к проведению измерений.
l-n	Напряжение между ${f L}$ и ${f N}$ находится вне допустимого для измерения диапазона.
L-PE	Напряжение между L и PE находится вне допустимого для измерения диапазона.
Err	Ошибка измерения. Невозможно отобразить результат.

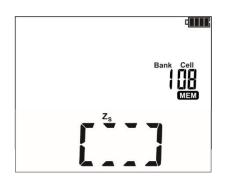
Errll	Отсутствие напряжения на объекте.
E00	Необходимо обратиться в Сервисный Центр.
ULn	Отсутствует подключение к шине N .

4 ПАМЯТЬ


Измеритель MZC-305 имеет память на 3500 отдельных измерений. Память имеет следующую структуру: 10 **Bank** по 99 ячеек **Cell**. При динамическом распределении памяти, каждая ячейка может содержать различное количество индивидуальных результатов, в зависимости от ваших потребностей. Это обеспечивает оптимальное использование памяти. Каждый результат можно сохранить в выбранный номер ячейки и в свой **Bank**. Выключение прибора никак не влияет на сохранность данных. В любой момент их можно просмотреть или передать на компьютер.

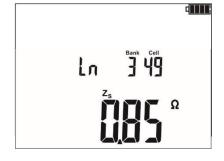
4.1 Запись в память результатов измерения


После окончания измерения нажмите клавишу **ENTER** для сохранения данных измерения.

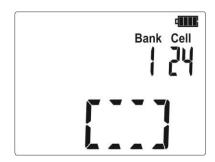

Пустая ячейка памяти.

В ячейке сохранены данные такого же типа измерения

В ячейке сохранены данные другого типа измерения.


В ячейке сохранены результаты нескольких типов измерения. Ячейка заполнена.

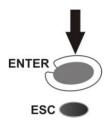
Клавишей SEL можно выбрать тип измерения



Клавишами Δ и ∇ можно выбрать отдельные компоненты измерения.



Нажмите клавишу **ENTER** для подтверждения сохранения данных в выбранную ячейку.


После сохранения прозвучит тройной звуковой сигнал, а на дисплее отобразятся данные ячейки.

При попытке перезаписать результат, отобразится предупредительный знак.

Для подтверждения нажмите **ENTER.** Для отмены нажмите **ESC.**

4.2 Изменение номера ячейки и/или Bank памяти

После окончания измерения нажмите клавишу **ENTER** для сохранения данных измерения.

Нажмите клавишу SETUP.

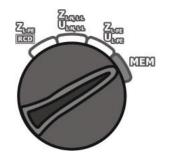
Замигает номер ячейки **Cell**.

Установите значение клавишами Δ и ∇ .

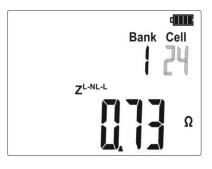
Нажмите клавишу \mathbf{SETUP} .

Замигает номер Bank.

Установите значение клавишами △ и ▽.

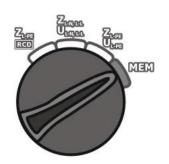


Нажмите клавишу **SETUP**. Измеритель вернётся в режим сохранения данных.


4.3 Просмотр данных памяти

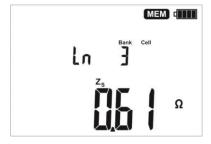
Включите измеритель. Установите поворотный переключатель в положение **МЕМ.**

На дисплее мигает номер последней сохраненной ячейки.

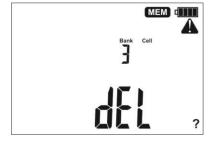

Номер **Bank** и ячейки **Cell** можно установить клавишами **SETUP** и Δ ∇

Дополнительная информация, отображаемая на дисплее:

Ln	Измерения выполнены в цепи Z _{L-N} , Z _{L-L}
LL	Измерения выполнены в цепи Z _{L-N} , Z _{L-L}
LPE	Измерения выполнены в цепи Z _{L-PE}
LPE меняющийся на гсф	Измерения выполнены в цепи Z _{L-PE} RCD

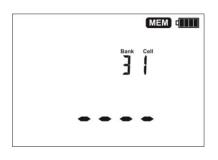

4.4 Удаление данных одного банка памяти

Включите измеритель. Установите поворотный переключатель в положение **МЕМ.**

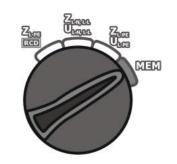


Установите нулевой номер ячейки в требуемом **Bank**.

На дисплее отобразится символ **dEL** , обозначающий удаление данных памяти.



Нажмите клавишу ENTER.



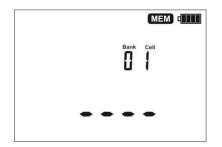
Нажмите клавишу **ENTER** для подтверждения удаления или клавишу **ESC**, для отмены.

После подтверждения удаления, на дисплее отобразится быстрая смена номеров ячеек памяти, а по окончанию, отобразится первая ячейка и прозвучит звуковой сигнал.

4.5 Удаление вех данных памяти

Включите измеритель. Установите поворотный переключатель в положение **МЕМ.**

Установите номер **Bank** после нулевое положение. Появится символ **dEL** , обозначающий удаление данных памяти.



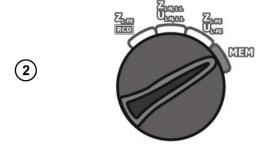
Нажмите клавишу ENTER.

На дисплее отобразится символы? и 🗥

Нажмите клавишу **ENTER** для подтверждения удаления или клавишу **ESC**, для отмены.

После подтверждения удаления, на дисплее отобразится первая ячейка, нулевой банк и прозвучит звуковой сигнал.

5 ИНТЕРФЕЙС


Измеритель имеет возможность подключаться к компьютеру для последующей передачи сохранённых данных. Для подключения используется программное обеспечение – «SonelReader», «СОНЭЛ Протоколы».

5.1 Подключение измерителя к компьютеру

(1) Подключите прибор через USB порт к Вашему компьютеру

Включите измеритель. Установите поворотный переключатель в положение **МЕМ.**

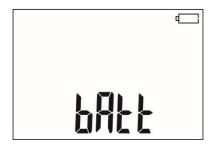
Режим передачи данных активен.

Для выхода из режима передачи данных нажмите клавишу **ESC**.

5.2 Обновление программного обеспечения измерителя

Включите измеритель одновременно удерживая клавиши **ENTER SETUP**.

Когда измеритель определит USB соединение, следуйте инструкциям программы.


6 ПИТАНИЕ

6.1 Информация о состоянии элементов питания

Уровень заряда элементов питания отображается соответствующим символом в правом верхнем углу дисплея.

Аккумуляторы/батареи полностью заряжены.

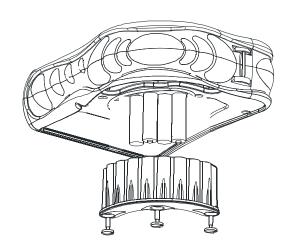
Аккумуляторы/батареи разряжены.

Аккумуляторы/батареи полностью разряжены.

Обратите внимание, что:

- Символ **ын** указывает на слишком низкий уровень заряда источника питания. Необходимо заменить батареи или зарядить аккумуляторные батареи!
- Измерение, проведенные с низким уровнем заряда элементов питания, могут иметь дополнительную погрешность.

6.2 Установка элементов питания


Измеритель MZC-304 питается от четырёх алкалиновых (щелочных) батареек типа AA LR6 или NiMH аккумуляторов типа AA HR6. Элементы питания располагаются на задней нижней части корпуса.

Внимание 🧥

Не отсоединение проводов от гнёзд во время замены элементов питания может привести к поражению опасным напряжением.

Порядок замены элементов питания:

- Отключите измерительные проводники и выключите прибор.
- Открутите 3 (три) винта на задней нижней части корпуса для снятия крышки батарейного отсека.
- Замените все элементы питания на новые, соблюдая полярность, указанную на дне батарейного отсека.
- Установите крышку батарейного отсека и закрутите 3 (три) винта.

6.2.1 Выбор типа элементов питания

После замены элементов питания, необходимо установить их тип (батареи/аккумуляторы) в меню прибора. Вход в меню согласно п.2.

Клавишами Δ или ∇ нужно установить требуемый тип элементов питания.

Клавишей **START** подтвердите выбранный тип элементов питания. Измеритель автоматически перейдет в режим измерения.

Внимание 🧥

Процедура выбора типа элементов питания является обязательной. Не выполнения описанных действий может привести к поломке прибора, а также возникновению дополнительной погрешности измерения.

Внимание 🧥

Аккумуляторные батареи должны заряжаться во внешнем зарядном устройстве

7 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

7.1 Основные технические характеристики

Сокращение «е.м.р.» в определении основной погрешности обозначает «единица младшего разряда».

Сокращение «и.в.» в определении основной погрешности обозначает «измеренная величина».

7.1.1 Измерение напряжения переменного тока (True RMS)

Диапазон	Разрешение	Основная погрешность
0,0249,9B	0,1B	± (2% и.в. + 4 е.м.р.)
250750B	1B	± (2% и.в. + 2 е.м.р.)

• Диапазон частоты: 45...65Гц

7.1.2 Измерение параметров петли короткого замыкания $Z_{L\text{-PE}}, Z_{L\text{-N}}, Z_{L\text{-L}}$

<u>Измерение полного сопротивления петли короткого замыкания Zs</u>

Диапазон согласно ГОСТ IEC 61557-3-2013

Проводник	Диапазон сопротивления Z _s
1,2м	0,131999Ом
5м	0,171999Ом
10м	0,211999Ом
20м	0,291999Ом
WS-01, -05	0,191999Ом

Диапазон измерения Z_S

Диапазон	Разрешение	Основная погрешность
019,99Ом	0,01OM	± (5% и.в. + 3 е.м.р.)
20,0199,9Ом	0,10m	+ (4% ta p + 2 c m p)
2001999Ом	10м	± (4% и.в. + 3 е.м.р.)

- Номинальное напряжение сети U_{n L-N} / U_{n L-L}: 110/190B, 115/200B, 127/220B, 220/380B, 230/400B, 240/415B, 290/500B, 400/690B;
- Рабочий диапазон напряжения: 100...440B (для Z_{L-PE} и Z_{L-N}) и 100...750B (для Z_{L-L});
- Номинальная частота сети f_n: 50Гц, 60Гц;
- Рабочий диапазон частоты: 45...65Гц;
- Максимальный измерительный ток для: 36,7A (10мс) для 690B, 21,3A (10мс) для 400B, 24,5A (10мс) для 230B, 12,2A (10мс) для 115B.

<u>Измерение активного R_S и реактивного X_S сопротивления петли короткого замыкания</u>

Диапазон	Разрешение	Основная погрешность
019,99Ом	0,010M	± (5% + 5 е.м.р.) от Z _s
20,0199,9Ом	0,10m	(3% + 3 e.m.μ.) 01 Z _S

[•] Рассчитывается и отображается для Z_S < 2000м

Ток короткого замыкания Ік петли

Диапазон согласно ГОСТ IEC 61557-3-2013 рассчитывается на основании Zs

Диапазон	Разрешение	Основная погрешность
0,0581,999A	0,001A	
2,0019,99A	0,01A	Определяется по основной
20,0199,9A	0,1A	погрешности полного
2001999A	1A	сопротивления петли короткого
2,0019,99кА	0,01кА	замыкания
20,040,0ĸA	0,1кА	

7.1.3 Измерение параметров петли короткого замыкания $\mathbf{Z}_{\text{L-PE}}$ $\overline{\text{RCD}}$

Измерение полного сопротивления петли короткого замыкания Zs

Диапазон согласно ГОСТ IEC 61557-3-2013

Проводник	Диапазон сопротивления Z _s
1,2м	0,431999Ом
5м	0,471999Ом
10м	0,511999Ом
20м	0,591999Ом
WS-01, -05	0,491999Ом

<u>Диапазон измерения Zs</u>

Диапазон	Разрешение	Основная погрешность	
019,99Ом	0,01Om	± (6% и.в. + 10 е.м.р.)	
20,0199,9Ом	0,10m	± (6% и.в. + 5 е.м.р.)	
2001999Ом	10м		

- Без отключения УЗО с I_{∆n} ≥ 30мА;
- Номинальное напряжение сети U_n: 110B, 115B, 127B, 220B, 230B, 240B, 290B, 400B;
- Рабочий диапазон напряжений: 100...440В;
- Номинальная частота сети f_n: 50Гц, 60Гц;
- Рабочий диапазон частоты: 45...65Гц.

Измерение активного R_S и реактивного X_S сопротивления петли короткого замыкания

Диапазон	Разрешение	Основная погрешность
019.99Ом	0,01Om	\pm (6% + 10 e.m.p.) от Z $_{ extsf{S}}$
20,0199,9Ом	0,10м	± (6% + 5 е.м.р.) от Z _S

[•] Рассчитывается и отображается для Z_S < 2000м

Ток короткого замыкания Ік петли

Диапазон согласно ГОСТ IEC 61557-3-2013 рассчитывается на основании Z_{S}

Диапазон	Разрешение	Основная погрешность	
0,0581,999A	0,001A		
2,0019,99A	0,01A	Определяется по основной	
20,0199,9A	0,1A	погрешности полного	
2001999A	1A	сопротивления петли короткого	
2,0019,99кА	0,01кА	замыкания	
20,024,0кА	0,1кА		

7.2 Дополнительные характеристики

Питание	
Питание измерителя	- Элемент питания LR6 (AA) — 4шт. - Элемент питания HR6 (AA) — 4шт.
Категория электробезопасности	CAT IV/600B

Условия окружающей среды и другие технические данные		
Диапазон рабочих температур	0°C+45°C	
Диапазон температур при хранении	-20°C+60°C	
Влажность	2080%	
Степень защиты, согласно ГОСТ 14254-2015 (IEC 60529:2013)	IP54	
Нормальные условия для поверки	Температура окружающей среды: +23°C ±2°C Влажность: 4060%	
Размеры	260 x 190 x 60mm	
Macca	около 2,2кг	
Дисплей	Сегментный ЖКИ	
Высота над уровнем моря	< 2000м	
Соответствие	ГОСТ Р МЭК 61557-1-2005	
Изоляция	Двойная согласно ГОСТ IEC 61010-1-2014 ГОСТ IEC 61557-2-2013	
Электромагнитная совместимость	ГОСТ Р МЭК 61326-1-2014 ГОСТ Р 51522.2.2-2014 (МЭК 61326-2-2:2005)	
Память	990 ячеек, 3500 результатов	
Интерфейс	USB	

8 КОМПЛЕКТАЦИЯ

8.1 Стандартная комплектация

Наименование	Кол-во	Индекс
Измеритель параметров цепей электропитания зданий MZC-305	1шт.	WMRUMZC305
Руководство по эксплуатации/Паспорт	1/1шт.	
Зажим «Крокодил» изолированный голубой К02	1шт.	WAKROBU20K02
Зажим «Крокодил» изолированный красный К02	1шт.	WAKRORE20K02
Зонд острый с разъёмом «банан» голубой	1шт.	WASONBUOGB1
Зонд острый с разъёмом «банан» красный	1шт.	WASONREOGB1
Зонд острый с разъемом «банан» жёлтый	1шт.	WASONYEOGB1
Кабель последовательного интерфейса USB	1шт.	WAPRZUSB
Провод измерительный 1,2м с разъёмами «банан» голубой	1шт.	WAPRZ1X2BUBB
Провод измерительный 1,2м с разъёмами «банан» жёлтый	1шт.	WAPRZ1X2YEBB
Провод измерительный 1,2м с разъёмами «банан» красный	1шт.	WAPRZ1X2REBB
Ремень для переноски прибора М1	1шт.	WAPOZSZE4
Футляр L4	1шт.	WAFUTL4
Элемент питания алкалиновый 1,5V AA LR6	4шт.	#

8.2 Дополнительная комплектация

Наименование	Индекс
Адаптер AGT-16C	WAADAAGT16C
Адаптер AGT-16T	WAADAAGT16T
Адаптер AGT-32P	WAADAAGT32P

Адаптер AGT-32T	WAADAAGT32T	
Адаптер AGT-63P	WAADAAGT63P	
Адаптер AGT-16P	WAADAAGT16P	
Адаптер AGT-32C	WAADAAGT32C	
Адаптер WS-01 с сетевой вилкой UNI-SCHUKO и кнопкой «СТАРТ»	WAADAWS01	
Адаптер WS-05 с сетевой вилкой UNI-SCHUKO	WAADAWS05	
Провод измерительный 10м с разъёмами «банан» красный	WAPRZ010REBB	
Провод измерительный 20м с разъёмами «банан» красный	WAPRZ020REBB	
Провод измерительный 5м с разъёмами «банан» красный	WAPRZ005REBB	
Программа автоматического формирования протоколов испытаний	#	
электроустановок «СОНЭЛ Протоколы 2.0»	#	
Элемент питания алкалиновый 1,5V AA LR6	#	

9 ОБСЛУЖИВАНИЕ ПРИБОРА

Внимание 🧥

В случае нарушения правил эксплуатации оборудования, установленных Изготовителем, может ухудшиться защита, применяемая в данном приборе.

Корпус измерителя можно чистить мягкой влажной фланелью. Нельзя использовать растворители, абразивные чистящие средства (порошки, пасты и так далее).

Электронная схема измерителя не нуждается в чистке, за исключением гнёзд подключения измерительных проводников.

Измеритель, упакованный в потребительскую и транспортную тару, может транспортироваться любым видом транспорта на любые расстояния.

Допускается чистка гнёзд подключения измерительных проводников с использованием безворсистых тампонов.

Все остальные работы по обслуживанию проводятся только в авторизированном Сервисном Центре ООО «СОНЭЛ».

Ремонт прибора осуществляется только в авторизованном Сервисном Центре.

10 УТИЛИЗАЦИЯ

Измеритель, предназначенный для утилизации, следует передать Производителю. В случае самостоятельной утилизации её следует проводить в соответствии с действующими правовыми нормами.

11 ПОВЕРКА

Измеритель сопротивления изоляции MZC-305 в соответствии с Федеральным законом РФ №102 «Об обеспечении единства измерений» ст.13, подлежит поверке. Поверка измерителей проводится в соответствии с методикой поверки, согласованной с ФБУ «РОСТЕСТ-МОСКВА».

Методика поверки доступна для загрузки на сайте www.sonel.ru

Межповерочный интервал – 1 года.

МЕТРОЛОГИЧЕСКАЯ СЛУЖБА ООО «СОНЭЛ» осуществляет поверку как собственного парка реализуемого оборудования, так и приборов остальных производителей, и обеспечивает бесплатную доставку СИ в поверку и из поверки экспресс почтой.

115533, г. Москва, пр-т Андропова, д.22, БЦ «Нагатинский», этаж 19, оф.1902.

Тел.: +7 (495) 995-20-65 E-mail: standart@sonel.ru Internet: www.poverka.ru

12 СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ

SONEL S.A., Poland, 58-100 Swidnica, ul. Wokulskiego 11

Tel: +48 74 85 83 800 Fax: +48 74 85 83 809 E-mail: sonel@sonel.pl Internet: www.sonel.pl

13 СВЕДЕНИЯ О ПОСТАВЩИКЕ

ООО «СОНЭЛ», Россия

142714, Московская обл., Ленинский р-н, д. Мисайлово, ул. Первомайская, д.158А.

Тел./факс +7(495) 287-43-53

E-mail: info@sonel.ru Internet: www.sonel.ru

14 СВЕДЕНИЯ О СЕРВИСНОМ ЦЕНТРЕ

Гарантийный и послегарантийный ремонт СИ SONEL осуществляет авторизованный Сервисный Центр компании СОНЭЛ и обеспечивает бесплатную доставку СИ в ремонт/из ремонта экспресс почтой.

Сервисный Центр расположен по адресу:

115533, г. Москва, пр-т Андропова, д.22, БЦ «Нагатинский», этаж 19, оф.1902.

Тел.: +7 (495) 995-20-65 E-mail: standart@sonel.ru Internet: www.poverka.ru

15 ССЫЛКИ В ИНТЕРНЕТ

Каталог продукции SONEL

http://www.sonel.ru/ru/products/

Электронная форма заказа услуг поверки электроизмерительных приборов.

http://poverka.ru/main/request/poverka-request/

Электронная форма заказа ремонта приборов SONEL

http://poverka.ru/main/request/repair-request/

Электроизмерительная лаборатория

http://www.sonel.ru/ru/electrical-type-laboratory/

Форум SONEL http://forum.sonel.ru/ КЛУБ SONEL http://www.sonel.ru/ru/sonel-club/